烘干機溫濕度操控器選用瑞創多段溫濕度烘干操控儀,茶籽烘干機,其運用嵌入式arm 技術,結合e. con總線操控系統軟硬件基礎。能夠收集4 路溫度信號、4 路濕度信號,操控3 路溝---道輸出,烘干機,3路直流通道輸出。可完成、高速的定時、模擬量溫濕度信號的輸入輸出操控。將物料干燥過程分為5 個溫濕度段,非常適合枸杞變溫變濕太陽能干燥設備;
其觸控操作界面簡單直觀,烘干機可完成溫濕度的實時監控; 可通過一路或多路溫度濕度信號和溝通/直流輸出通道形成獨立的溫度濕度操控系統。輸入信號可由多路溫濕度傳感器收集; 當采用多路溫度濕度信號時,取多路溫度濕度信號的平均值作為當時溫度濕度點進行操控。可完成干燥工藝的自在輸入存儲,并依據工藝參數設置,配合繼電器操控多個執行部件的行,完成對枸杞的多段式變溫變濕干燥。
試制的太陽能烘干房到達了預期的意圖,能夠滿足無核小棗干燥加工要求。進行烘干機干燥性能實驗,-物料及能量,醉終確定了設備參數,測定計算的設備干燥總功率為63. 40%,到達較高水平。
對于鮮棗的干制實驗結果顯示,干燥時刻為18 h,傳統天然干燥時刻為15 d,遇上陰雨氣候還要延長。較天然日曬干燥的縮短了76%,太陽能熱泵組合干燥的鮮棗不受氣候的影響。
烘干機選用全自動智能控制,使太陽能干燥和熱泵干燥有幾互補運用,可滿意多種所需的干燥工藝要求,使干燥進程全自動化。可用于葡萄、杏等果品的干燥加工,也可用于脫水蔬菜的加工。
烘干機熱泵是目前為止人類發現的僅有熱功率超過100% 的設備,沒有任何污染,運用電驅動,溫度濕度調控比較方便。相比電鍋爐,能夠節省50% 以上的電力消耗,并且減少了常常更換電熱管的費事; 相比傳統煤鍋爐和燃油鍋爐,無污染,無排放,安全,省去了每年例行的安檢,批發烘干機,省去了的鍋爐工,全自動控溫,運轉費用也大幅降低50%以上。
太陽能和空氣熱能都是清潔動力,設備工作零排放,并且不存在燃煤干燥污染---,使加工的產品安全得到---。太陽能干燥是農產品干燥的抱負加工方法,木片烘干機,溫度在65 ℃以下,能---地保存營養價值,能夠避免露天攤曬中出現灰塵、蠅蟲等污染和腐爛變質現象,可以節省燃煤等傳統干燥方法的動力消耗,降低成本,減少污染排放。
烘干機
烘干機分級器內孔直徑d 取值150~160mm時,樣品a、樣品b實驗的出籽率均大于50%,故烘干機使用此區間的內孔直徑進行實驗時,有未干燥或未干燥的玫瑰花籽排出;分級器內孔直徑d 取80~110mm 時,樣品a、樣品b實驗的出籽率均低于20%,此時烘干機干燥后的玫瑰花籽無---常排出;烘干機分級器內孔直徑d 取110~140mm時,樣品b實驗的出籽率逐步增大接近至100%,樣品a實驗的出籽率幾乎為0。
綜上所述分級器內孔直徑d 取110~140mm 時,能夠同時滿足烘干機內玫瑰花籽安全貯藏含水率w0≤8%正常排出,油菜籽含水率w1=20.78%不出籽的設計要求。干燥溫度對單位時刻失水率的影響玫瑰花籽品質受溫度影響較大,應根據不同烘干機類型嚴格控制干燥過程中的醉高料溫。干燥機一般的干燥溫度為75~85℃,不得---90℃,故選取干燥器進風口溫度t=60~90℃進行實驗。實驗時,稱取玫瑰花籽樣品a,每組5kg,取氣流速度v=20m/s、分級器內孔直徑d=140mm,測定進風口溫度在60,70,80,90 ℃對單位時刻失水率的影響。
烘干機
結果表明:跟著溫度的升高,單位時刻失水率逐步增大。溫度從60℃增大到80℃時,單位時刻失水率增大顯著,溫度從80℃增大到90℃時,單位時刻失水率較高,且單位時間失水率---維持在1%/min左右,可以猜測,溫度持續增大,其單位時刻失水率變化很少,能量消耗將會大幅增加。故玫瑰花籽干燥溫度宜取70~90℃。
烘干機氣流速度對單位時刻失水率的影響
實驗時,稱取玫瑰花籽樣品a,每組5kg,取干燥溫度t=80℃、分級器內孔直徑d=140mm,測定進風口風速在17,19,22,25m/s時對單位時刻失水率的影響。