在標準進氣風管測試裝置上,對風機及在風機蝸殼周向板、前蓋板、后蓋板等部位分別加裝吸聲材料后,測試了不同結構形式下風機性能和噪聲特性。試驗結果表明:相比原風機,蝸殼周向板與后蓋板同時加裝吸聲材料效果較好,設計工況下a聲級能夠降低7.2db(a),在小流量工況下,吸聲蝸殼的降噪效果變差;根據風機噪聲頻譜,穿孔板加玻璃棉吸聲蝸殼的吸聲性能中高頻好于低頻,風機基頻噪聲在設計點能夠降低12.5db(a);風機加裝吸聲材料后風機氣動性能會略有下滑,壓力和效率都有不同程度的降低。離心式風機是工業生產中應用廣泛的通用輔助設備,而風機噪聲尤其大型風機噪聲很大,-影響人的-,所以降低風機噪聲有著重要的意義。由于蝸殼壁面是離心風機主要的氣動噪聲源,蝸殼不消聲時,聲波在風機蝸殼內連續反射,形成一個混響聲場,聲壓級較高。采用消聲蝸殼后,被吸收的聲能多,被反射的聲能少,其聲場的聲壓級就會降低。
對于風機消聲蝸殼降噪效果的研究,-很多學者都做了不少的研究工作。bartenwerfer等將蝸板外側消聲部分的外殼做成方形,里面填充消聲材料對離心風機進行降噪試驗研究,使改進后的風機a聲級降低了9~12db(a)。劉曉良等研究了消聲蝸殼消聲材料厚度、空腔厚度等對風機降噪效果的影響,結果表明:適當增加消聲材料厚度或空腔厚度可以提高消聲蝸殼的降噪效果。到目前為止,對消聲蝸殼的研究基本都集中在周向蝸板上加裝消聲材料,對風機側板加消聲材料的消聲蝸殼降噪效果研究得還比較少。
為研究后風機葉輪的流場及噪聲問題,采用三維建模軟件ug對現有葉輪進行逆向建模,提取出葉輪的幾何模型,運用hypermesh對葉輪模型進行網格劃分,然后采用fluent軟件模擬了葉輪三維粘性定常流動特性,分析了葉輪內部流動情況,在此基礎上對葉輪模型進行噪聲分析,得到流場模擬和噪聲分析結果,為葉輪優化設計提供理論依據。
風機作為干燥、通風類家電產品的重要組成部件,其性能直接影響著家電產品的高低。隨著現代生活對節能、等要求日益提高,開發、低噪風機成為必然趨勢。離心式通風機的工作介質為氣體,工作過程中會產生氣動噪聲、機械噪聲和氣固耦合噪聲,其中氣動噪聲是主要噪聲,約占到總噪聲的45%左右。風機氣動噪聲主要由離散噪聲旋轉噪聲和湍流噪聲組成。高速高壓離心風機旋轉噪聲較高,低速低壓風機以湍流噪聲為主。且基頻噪聲和寬頻噪聲在風機中不同程度的存在。目前對離心式通風機降噪研究還處于試驗為主的研究階段,但試驗研究成本較大、周期較長,這對風機產品開發非常不利。此外,菏澤風機,影響離心式通風機氣動噪聲的因素眾多,設計所得結果的降噪機理難以被系統揭示。數值模擬方法能夠提供風機的內部流場信息和噪聲分布情況,有利于準確認識離心式通風機噪聲產生機理和降噪原理,為進一步推廣降噪設計的方法提供依據。所以,對離心式通風機數值模擬的研究是非常-的。
風機性能試驗原理及其裝置為了驗證修正后數值計算模型的準確度,對原風機的不同工況氣動性能試驗。將修正前后數值計算模型預測原型機性能結果與試驗值作對比分析,由數據可知,采用標準k-ε 模型預測的風機性能曲線較試驗值存在一定誤差,其較大誤差值達9.5%,修正的k-ε 模型,各流量工況下風機出口靜壓計算值與試驗值吻合,其性能曲線趨于重合,兩者誤差值明顯減小,4-72風機,且較大誤差降低至3%,充分驗證了所采用的數值計算模型修正方法的可行性,同時為下文風機性能的準確度和-性預測提供支撐。設計原理分析原風機蝸殼內壁型線采用的是傳統蝸殼型線設計方法,即不考慮壁面粘性摩擦的影響,5-51風機,氣流動量矩保持不變,運用不等邊基圓法繪制的近似阿基米德螺旋線。而實際流動過程中,氣體粘性作用常導致其速度在過流斷面上呈現的分布不均勻現象。
對于低速小型多翼離心風機而言,由于氣體流道狹窄,受粘性作用的影響,風機內壁面邊界層分離加劇,經過葉輪加速的氣體流速沿蝸殼徑向方向逐漸減小,而在風機蝸殼出口處,由于同時受到蝸舌結構和蝸殼壁面的影響,其流速為管道流速度分布,受粘性作用的影響,蝸殼內流體于整個流道空間內呈現速度分布不均勻的現象,因此在實際流動過程中,流體動量矩并不是不變的,而是隨流動的進行不斷減小,故基于動量矩守恒定律設計的傳統蝸殼型線存在動量修正的-。改型設計方法由于氣體粘性力無法通過簡單的公式運算獲得,且其大小受氣體速度的影響,因此本文采用一種簡單化的求解方法,即基于傳統不等邊基圓法,9-16風機,風機運用改進后的k-ε 模型對原風機進行數值模擬,設置如圖8 所示的4 個監測截面,其方位角φ 分別為90°、180°、270°、360°。通過fluent 后處理計算得出蝸殼壁面區域于以上4 個截面處所受粘性力大小fν ,測量力矩中心至力-距離r,由額定工況下風機總流量q 計算得單位流體所受黏性力矩平均值m fr / q。