烘干機分級器內孔直徑d 取值150~160mm時,樣品a、樣品b實驗的出籽率均大于50%,故烘干機使用此區間的內孔直徑進行實驗時,有未干燥或未干燥的玫瑰花籽排出;分級器內孔直徑d 取80~110mm 時,樣品a、樣品b實驗的出籽率均低于20%,此時烘干機干燥后的玫瑰花籽無-常排出;烘干機分級器內孔直徑d 取110~140mm時,芒果烘干機,樣品b實驗的出籽率逐步增大接近至100%,樣品a實驗的出籽率幾乎為0。
綜上所述分級器內孔直徑d 取110~140mm 時,能夠同時滿足烘干機內玫瑰花籽安全貯藏含水率w0≤8%正常排出,油菜籽含水率w1=20.78%不出籽的設計要求。干燥溫度對單位時刻失水率的影響玫瑰花籽品質受溫度影響較大,應根據不同烘干機類型嚴格控制干燥過程中的醉高料溫。干燥機一般的干燥溫度為75~85℃,不得-90℃,故選取干燥器進風口溫度t=60~90℃進行實驗。實驗時,稱取玫瑰花籽樣品a,每組5kg,取氣流速度v=20m/s、分級器內孔直徑d=140mm,測定進風口溫度在60,70,80,90 ℃對單位時刻失水率的影響。
烘干機
結果表明:跟著溫度的升高,單位時刻失水率逐步增大。溫度從60℃增大到80℃時,單位時刻失水率增大顯著,溫度從80℃增大到90℃時,單位時刻失水率較高,且單位時間失水率-維持在1%/min左右,可以猜測,溫度持續增大,其單位時刻失水率變化很少,能量消耗將會大幅增加。故玫瑰花籽干燥溫度宜取70~90℃。
烘干機氣流速度對單位時刻失水率的影響
實驗時,稱取玫瑰花籽樣品a,每組5kg,取干燥溫度t=80℃、分級器內孔直徑d=140mm,小型豆渣烘干機,測定進風口風速在17,19,22,25m/s時對單位時刻失水率的影響。
環境壓力
烘干機環境壓力是經過影響水的平衡進而影響干燥,在真空干燥環境下,濕空氣的蒸氣壓下降對恒速階段干燥有推進作用。然而在干燥的第二階段,即干燥處在由內部水分轉移階段時,則真空干燥對干燥速率并沒有形成很大的影響。此外,物料的內部安排密度、形狀及外表積、導熱系數、導濕系數、擴散系數等、化學成分等也會對干燥產生影響。
烘干機
農副產品干燥方法簡介
農副產品的干燥方法可分為自然干燥、人為干燥、化學干燥等。地外表干燥、烘干機干燥、草架干燥和發酵干燥是人們常用的自然干燥方法。地面干燥法就是將收割后的牧草在地面進行晾干的方法,當植株體內的含水量下降到45%上下時,用起條的方法進行暴曬。草架干燥法適合濕潤多雨的區域,這些區域-沒有辦法使用地面條件進行干燥,使用-的草搭架完成干燥。發酵干燥法就是將牧草收獲后進行自然攤晾,待含水量下降至500}水平常,將其壓實,然后用土或薄膜蓋在這些壓實草垛的上外表,烘干機,在2到3天的時間使垛升溫至60-70度,當遇到太陽天后再翻開暴曬,醉終將牧草干燥。自然干燥法醉簡單受自然氣候條件的影響,盡管所需的設備很少、本錢很低,但是勞動強度大、功率不高,調整的干燥自然而然會差意一些。
烘干機
烘干機溫控系統組成原理
本文所述的烘干機是用來烘干紫菜等產品,完成存儲意圖的裝置。采用箱式結構,以熱輻射加熱為主,采用對流熱風循環。烘干機采用1 個烘干箱,6 個溫區,每個溫區的丈量和控制原理完全相同。烘干過程中,烘干箱內溫度的資料和控制規模為0-110℃,顯現精度為0.1℃,控制精度小于1℃。根據上述要求進行設計溫控系統,飼料烘干機,以滿意烘干機所有的溫度、精度。
本文設計的溫控系統硬件部分分為:單片機主控模塊、輸入輸出通道模塊、報警模塊等。硬件的整體結構示意圖。烘干機溫控系統由單片機為中心,與外部芯片擴展構成主控模塊。烘干箱的溫度由溫度傳感器檢測后,通過單片機內置的12 位a/d 轉化器轉化成數字信號。數字信號經采樣、濾波、標度轉化后,一方面將烘干箱內溫度由顯現器顯現,另一方面將該溫度值與設定值進行比較,取偏差值依照積分別離的pid 控制算法計算得輸出控制量。控制輸出量通過固態繼電器控制加熱管的加熱時間,從而調節溫度改變,使其趨向設定值,完成烘干機的溫度控制。
溫控系統設計硬件
烘干機電源電路
電源模塊是溫控系統重要的組成部分,為系統中各模塊供給穩定牢靠的作業電壓,-系統正常作業。本系統采用外部12v 直流電源供電,經處理轉化成3.3v 為單片機供電。烘干機設計分兩步,一:選用輸出電壓精度高,輸出電流大的模塊電源,將電壓從12v 轉化成5v;二:選用三端集成穩壓器將電壓從5v 轉化成3.3v。