介紹了一套高負荷風機的氣動設計過程,耐高溫軸流排風機,包括參數選擇、葉片形狀優化和三維葉片的設計思想。在此基礎上,完成了高負荷軸流風機壓力比1.20的初步設計,負荷系數---0.83。其次,在初步設計方案中,通過對風機靜葉多葉高處s1流面剖面的協調優化,有效地減少了靜葉損失,提高了風機的裕度。同時,采用三維葉片技術,提高了定子葉片的端部流動,提高了定子葉片端部區域的工作能力。風機裕度由27.1%擴大到48.8%。優化葉頂間隙形狀可以有效地提高軸流風機的性能。采用fluent軟件對ob-84動葉可調軸流風機在均勻和非均勻間隙下的性能進行了數值模擬,討論了不同間隙形狀對泄漏流場和間隙損失分布的影響。結果表明,在平均葉頂間隙不變的前提下,錐形間隙風機的總壓力和于均勻間隙風機,區范圍擴大,錐形間隙越大,性能---越---;錐形間隙改變了間隙內渦量場的分布,減少了葉尖泄漏損失,高溫烘箱風機,增強了風機葉片上、中部的功能力。風機的性能低于均勻間隙的性能。錐形葉片的葉尖間隙形狀可以作為提高風機性能的重要手段。
不同風機靜葉設計點90%葉片高度剖面上的壓力分布。從圖中不難看出,原型直葉片的進口具有明顯的正攻角,端彎葉片的載荷由于分離流動而減小。由于受葉片端部彎曲的影響,三維葉片的攻角幾乎為零,并且由于端部流動的---,載荷甚至略高于原型直葉片。研究了不同靜葉對單級風扇級性能的影響。風機帶有三個不同定子葉片的單級風扇級的效率特性。從風機中不難看出,端部彎曲定子可以有效地提高裕度,但由于定子損耗的增加,級效率降低了1.39%。前緣彎曲引起的葉片反向彎曲效應被葉片正向彎曲疊加所抵消。舞臺效率略有提高,高點提高0.26%。失速邊界越近,風扇級效率越明顯。同時,風機轉子出口頂部的靜壓力隨著定子葉片頂部的功能力的增加而降低如圖21所示,轉子葉片出口直徑上的靜壓力。在方向分布上,將定子出口處的背壓設置為接近失速的原型級工況,風機,背壓為114451pa,風機的失速裕度進一步從27.1%擴大到48.8%,推遲了葉尖泄漏引起的失速。
本文列舉了風機靜音扇葉,說明了s1流面優化設計在風機詳細設計過程中的作用。根系頂部三個橫截面的流入條件不同,烘干機配套風機,如表3所示。根部設計點的進口氣流角較大,風機工作范圍不同于其它兩段。由于轉子葉片泄漏流的影響,頂部馬赫數較小,工作范圍較大。采用多島遺傳算法進行優化,種群44,孤島7,代數7。三個截面共優化了22個葉片型線參數,包括較大厚度位置、安裝角度、中弧控制點、吸入面控制點等。當優化后的葉片型線三維疊---,風機葉片上半部分略微向后彎曲,可能導致優化后的定子葉片損失增加。將優化后的靜葉恢復到級環境中,得到了三維數值模擬結果。在設計點流量下,靜葉吸力面邊界層變薄,堵塞面積減小。計算了級間環境下兩葉型風機特性線和兩定子葉片變攻角特性線。從圖17可以看出,定子葉片損失減小,裕度增大,這與不同截面的s1流面性能分析結果相似。但由于風機氣流角的匹配問題,級效率沒有明顯提高,之間失速裕度由27.1%提高到34.9%。針對葉片高度方向的不均勻進口流動情況,在詳細設計中采用了端部彎曲技術來匹配定、轉子葉片之間的流動角。