消聲蝸殼對離心風機氣動性能的影響原風機與不同消聲組合試驗所得的氣動性能對比如圖3 所示。試驗結果表明: 由于穿孔板相對于光滑的鋁板有著較高的壁面摩擦阻力,導致加裝穿孔板后的風機壓力和效率在整個測試工況范圍內都有不同程度的降低。4種消聲組合方式的壓力損失并不相同,當額定轉速為3 800 r /min,在設計工況下,a 組合改進風機全壓降低了約16.0 pa,效率下降了約1.28%; b 組合改進風機全壓降低了約5.0 pa,離心風機效率下降了約0.9%; c 組合改進風機全壓降低了約36.8 pa,效率下降了約3.18%; d 組合改進風機全壓降低了約45.8 pa,效率下降了約3.28%。
主要由于安裝穿孔板的面積不同,導致不同消聲組合方式的摩擦損失不同。b 組合即只在風機后蓋板上安裝穿孔板,風機壓力損失小。不同工況下,風機壓力和效率損失也不相同,在設計工況及偏大流量工況下,離心風機壓力和效率損失較大,效率也同步降低。主要原因是大流量工況下,蝸殼內部氣流速度較高,氣流與穿孔板之間的摩擦損失增加。消聲蝸殼為a 組合形式時與原風機的出口a聲級隨流量變化的對比圖。可以看出,不同工況下,a 型消聲蝸殼的降噪效果不同,離心風機在額定工況點附近,降噪效果好; 在大流量工況下,降噪效果變差,這主要因為大流量情況下,蝸殼內氣體流速較大,而氣體流速對吸聲材料的吸聲效果影響很大; 在小流量工況下,風機流動惡化,風機振動較大,導致振動噪聲很大以致降噪效果反而變差。與原風機相比,在額定工況點a 聲級降低約4.5 db( a) ,在大流量工況下,a 聲級降低約3.6 db( a) ,在小流量工況下,a 聲級降低約1.9 db( a) 。
離心風機產生的原因是此次打表所用的磁性表座固定百分表的方式剛性和-性欠佳,當聯軸器轉到下方時,由于磁性表座、連接桿、緊固件和百分表的自重,造成百分表下墜,探頭脫離測點,結果就是產生上文所述的異常讀數。當檢修人員按作者建議制作的表架后,在檢修過程中,不再出現異常讀數,檢修任務按時-完成。離心風機轉子不平衡和檢查處理措施造成風機轉子不平衡的原因主要有:葉輪出現不均勻的磨損或腐蝕;葉輪表面存在不均勻的積灰或附著物;葉片連接處存在裂紋或葉輪與輪轂、輪轂與軸頸的連接配合松動等。用測振儀測得數據,如果顯示振動值徑向較大而軸向較小或者振動值隨轉速上升而增大,都是轉子不平衡引起振動的特征。
預防處理措施主要有:
一是,根據離心風機的運行工況,在進風機前工序上采取除塵措施,控制減少進入風機的粉塵等含量;
二是,定期清理風機葉輪,順便仔細檢查葉輪是否存在裂縫以及葉輪與主軸的配合情況。一般來說,轉子不平衡引起的振動都是葉輪表面存在不均勻的積灰或附著物產生的。對于難于清洗的離心風機葉輪轉子可采用化學法清洗,如-生產中二-硫主風機葉輪,可采用氫氧化鈣稀水,再用高壓噴射機噴射清洗葉輪,速度快效果佳。
離心風機性能試驗原理及其裝置為了驗證修正后數值計算模型的準確度,對原風機的不同工況氣動性能試驗。將修正前后數值計算模型預測原型機性能結果與試驗值作對比分析,由數據可知,采用標準k-ε 模型預測的風機性能曲線較試驗值存在一定誤差,其較大誤差值達9.5%,修正的k-ε 模型,各流量工況下離心風機出口靜壓計算值與試驗值吻合,其性能曲線趨于重合,兩者誤差值明顯減小,且較大誤差降低至3%,充分驗證了所采用的數值計算模型修正方法的可行性,同時為下文離心風機性能的準確度和-性預測提供支撐。設計原理分析原風機蝸殼內壁型線采用的是傳統蝸殼型線設計方法,即不考慮壁面粘性摩擦的影響,氣流動量矩保持不變,運用不等邊基圓法繪制的近似阿基米德螺旋線。而實際流動過程中,氣體粘性作用常導致其速度在過流斷面上呈現的分布不均勻現象。
對于低速小型多翼離心風機而言,5-48離心風機,由于氣體流道狹窄,受粘性作用的影響,風機內壁面邊界層分離加劇,供應離心風機,經過葉輪加速的氣體流速沿蝸殼徑向方向逐漸減小,而在離心風機蝸殼出口處,由于同時受到蝸舌結構和蝸殼壁面的影響,其流速為管道流速度分布,受粘性作用的影響,蝸殼內流體于整個流道空間內呈現速度分布不均勻的現象,因此在實際流動過程中,流體動量矩并不是不變的,而是隨流動的進行不斷減小,故基于動量矩守恒定律設計的傳統蝸殼型線存在動量修正的-。改型設計方法由于氣體粘性力無法通過簡單的公式運算獲得,且其大小受氣體速度的影響,因此本文采用一種簡單化的求解方法,即基于傳統不等邊基圓法,離心風機運用改進后的k-ε 模型對原風機進行數值模擬,9-12離心風機,設置如圖8 所示的4 個監測截面,菏澤離心風機,其方位角φ 分別為90°、180°、270°、360°。通過fluent 后處理計算得出蝸殼壁面區域于以上4 個截面處所受粘性力大小fν ,測量力矩中心至力-距離r,由額定工況下風機總流量q 計算得單位流體所受黏性力矩平均值m fr / q。