比較兩種葉輪的振動模態,可以看出,每種葉片的低階模態都表現出從葉片頂部到根部的彎曲變形,-模態是葉片兩側的扭轉變形。風機葉輪各級的形狀變形和較大變形都在葉片頂部,葉片角度可調的葉輪的葉片變形相對較大,因為其材質為尼龍66,剛度小于q235,更容易變形。葉片角固定葉輪的葉根與輪轂固定,因此葉根與輪轂相對穩定,基本無變形。由于葉片角度可調葉輪增加了角度調節機構,使得葉根彎曲變形和扭轉變形較小。風機實驗采用了力錘激勵、加速度傳感器采集信號、lms數據采集與處理等方法。該測試的主要過程包括:支持被測對象、選擇激勵方案、布置傳感器、確定輸入通道、建立測試模型和與通道相關、確定分析帶寬、測量和保存數據。由于輪轂變形基本為0,風機,風機葉輪通過柔性彈性繩懸掛在輪轂上進行測量。振動方式選擇力錘激振,固定錘擊點,移動傳感器測量。由于葉片的明顯變形,每個葉片頂部和根部有兩個測量點,葉片下方輪轂有一個測量點,每個葉輪有50個測量點。建立合適的圓柱坐標系,測量各測點的相對坐標,建立測試模型。傳感器布置完畢后,測試通道與模型中相應的測量點相關聯。通過力錘激勵收集數據。同樣的方法依次測量每個葉輪的50個測量點。在polymax輸入模塊中選擇已有的fr集,在高層穩態圖中選擇符號較多的列,即阻尼頻率、頻率和模向量穩定性。
根據,烘干機配套風機,風機標準控制在v<4.6mm/s,電廠運行報警值設置為v<7.1mm/s,跳閘值設置為v<11mm/s,若-儀表信號失真導致誤跳閘,可設置二選二跳閘。測量振動位置可分為三個方向:水平方向、垂直方向和軸向。軸流風機殼體的中表面也是如此,這也是本標準允許的。對于運行中的風機,解決振動問題的關鍵是找到振動源。通常,在測量水平、垂直和軸向位置的較大振動位置時,應考慮到振動源。水平振動:可考慮軸承、轉子平衡、氣流發生和軸偏移引起的振動。
風機垂直振動:可考慮產生風扇的基礎,上下連接螺栓,風扇的固定部分引起振動。
軸向振動:可考慮中間聯軸器彈簧受拉或受壓引起的振動和軸承座軸向間隙。實際運行中,現場操作人員發現風機振動較大。他們首先想到的是平衡問題。無論振動源如何,就地平衡風機都是錯誤的。風機振動不平衡。為了找出振動超標的原因,首先要對振動源進行分析,然后采取適當的措施,有效地解決大振動問題。
風機運行時軸承溫度。軸承溫度是衡量風機安全運行的一個指標,因為風機使用的軸承是進口的,如fag或skf。一般情況下,警報設置為90,跳閘設置為110 c。軸承溫度主要通過溫升的變化來測量。風機運行時溫升一般在20℃左右,溫升控制在40℃以內,。
葉頂間隙對風機性能影響的計算值r在-1,1范圍內,r>;0為正相關,r<0為負相關,r的值表示各變量之間的相關程度。一般認為,當r的值大于0.8時,兩個變量之間有很強的相關性。根據上述定義,分別討論了葉尖間隙對風機效率和失速特性的影響,并驗證了葉尖間隙與上述兩個性能參數的關系。比較了葉尖間隙對風機效率和失速特性的影響,以及葉尖間隙與失速點偏差、效率偏差的關系。從表中可以看出,木材干燥窯風機,風機理論失速點與實際失速點的壓力偏差大,效率偏差也大。為了定量研究葉頂間隙與壓力偏差、失速點效率偏差的關系,烘箱循環風機,計算得到了葉頂間隙與壓力偏差、失速點效率偏差的相關系數:
1風機葉頂間隙與壓力偏差、失速點效率偏差的相關系數。失速點壓力偏差為-0.99,即葉尖間隙越大,失速點負壓偏差越大,實際失速線與理論失速線相對應。線越向下偏離。
2風機葉尖間隙與效率偏差的相關系數為-0.93。葉尖間隙與效率也有很強的相關性。也就是說,葉尖間隙越大,負效率偏差越大。通過對相關系數的研究,可以發現葉尖間隙與失速點壓力偏差、效率偏差之間有很強的相關性。