本文以方案機的定子葉片為例進行了詳細設計,優化了s1流面葉型,風機采用三維葉片技術---了定子葉柵內的流動。通過三維數值模擬,對s2流面設計中的損失和滯后角模型進行了標定,烘箱循環風機,為葉片三維建模提供了依據。通過與初步三維設計結果的比較,兩種設計方案的氣動參數徑向分布一致,證實了風機設計過程中s2流面設計的準確性和---性。由于葉尖泄漏流的存在,風機,葉尖壓力比與氣流角圖中灰色虛擬線圈所示的面積之間存在一定的偏差,但通過三-fd的修正,s2的設計趨勢預測了葉尖泄漏流對氣動參數徑向分布的影響;bec在高負荷下,定子根部出現了氣流分離現象,導致了出口氣流角和s2設置的初步三維設計。預測結果略有不同圖中橙色虛線圈所示的區域。風機利用一條非均勻有理b-sline曲線來描述由四個控制點紅點控制的曲線,包括前緣點和后緣點。葉片體由四條非均勻曲面、兩個吸力面和兩個壓力面組成,同時與較大切圓灰圓和前緣后緣橢圓弧相切。利用mit mises程序對s1型拖纜葉片進行了流場分析。采用b-lbaldwin-lomax湍流模型和agsabu-ghamman-shaw旁路過渡模型描述了過渡過程。
在風機葉片前緣形成了c形軸向速度分布,在翼型阻力的作用下,流入流的軸向速度減小,形成了一個低速區。吸入面沿轉子旋轉的相反方向形成橫向壓力梯度。根據機翼理論,通過吸力面的速度高于通過壓力面的速度,吸力面后緣形成高速區。進一步討論了動葉區中間流動面內的總壓力分布。分析了在設計流量下動葉區中流面內的總壓分布。由于風機葉片壓力面所做的工作,壓力面上的總壓力明顯高于吸力面上的總壓力,總壓力沿動葉片旋轉方向由壓力面逐漸下降到吸力面。總壓逐漸升高,但吸入面略有變化。這是因為當氣流通過葉柵時,從吸力面到相鄰葉片壓力面的離心力沿葉片高度逐漸增大。為了抵消離心力的影響,烘箱用風機,將葉片設計為扭曲葉片后,沿葉片高度方向產生橫向壓力梯度,使兩個力達到平衡,木材干燥窯風機,吸力面附近有一個負壓區。由于風機葉片的吸入面和壓力面之間的壓差較大,位于壓力側的流體通過葉尖間隙流向吸入面,導致葉尖間隙中的泄漏流。泄漏流與主流相互作用,產生較大的泄漏損失。
風機四種不同結構尺寸的半圓形軸縫。模擬和試驗結果表明,軸向縫處理技術不僅能達到穩定膨脹效果,而且能在設計速度下提率和壓力比。套管壁環對簡單風機性能的影響。結果表明,環形結構能有效地削弱葉頂間隙渦,甚至抑制其產生,有效地提高了風機的總壓和效率。全冠、部分冠和加強型部分冠對風機氣動性能的影響。結果表明,部分冠形能削弱泄漏流和二次流的強度,與全冠形相比,部分冠形的效率提高了0.6%。satish koyyalamudi和nagpurwala[17]對離心式壓縮機的導葉進行了處理。結果表明,改進后的壓氣機峰值效率降低了0.8%~1%,失速裕度提高了18%,阻塞流量提高了9.5%。葉頂間隙形態的研究主要集中在離心式、軸流式壓縮機和渦輪上,而葉頂間隙形態對軸流風機---是動葉可調軸流風機性能影響的研究相對較少。考慮到優化葉頂間隙形狀可以有效地提高風機的性能,對ob-84動葉可調軸流風機在均勻間隙、逐漸收縮和逐漸膨脹等六種非均勻間隙下的性能進行了三維數值模擬。比較了不同葉尖間隙形狀下的內部流動特性、總壓分布和葉輪作用力,分析了漸縮型和漸擴型。間隙對風機性能影響的內在機理。