根據以往對風機亞音速定子葉片的研究,前緣彎曲用于匹配迎角[20],根部彎曲高度為20%,端部彎曲角度為20,頂部彎曲高度為30%,端部彎曲角度為40,如圖18左側所示。彎曲高度和彎曲角度的選擇是基于流入流的流動角度條件:如圖5中藍色箭頭所示,定子葉片的流入角度受上游動葉片的影響,風機,靠近端壁有兩個不符合主流分布趨勢的區域,而彎曲高度末端彎板的t應覆蓋與流動角度匹配的區域;末端彎板角度的選擇基于區域和主流流動角度之間的差異。
根據前面的研究,風機前緣彎曲的定子葉片可以有效地消除流入攻角,但葉片的局部端部彎曲會導致葉片局部反向彎曲的形狀效應。在---端部攻角減小的同時,定子葉片端部的阻塞量增大,損失增大。在端部彎曲建模的基礎上,適當疊加葉片正彎曲建模,可以減小端部攻角,---定子葉片和級間的有效流動。通過實驗設計的方法,得到了合適的前彎參數:風機彎曲高度60%,輪轂彎曲角度40,翼緣彎曲角度20,基本符合以往研究得出的彎曲葉片設計參數選擇規則。不同葉柵的吸力面徑向壓力梯度和出口段邊界層邊界的徑向壓力梯度可以---地進行比較。在帶端彎和正彎葉片的三維復合葉片表面,存在兩個明顯的徑向壓力梯度增大區域,形成從端彎到流道中徑的徑向力,引導風機葉片表面邊界層的徑向重排。從出口段附面層的邊界形狀可以看出,烘干機風扇,復合三維葉片試圖使葉片的徑向附面層均勻化,烘干房耐高溫風機,消除了葉片角部區域的低能流體積聚,對提高葉片邊緣起到了明顯的作用。
當風機葉頂間隙形狀發生變化時,不可避免地會引起葉頂及其附近的吸力面和壓力面流場的分布。由于葉尖間隙的存在,泄漏流將與通道內的主流混合,在吸入面頂角形成泄漏旋渦。風機與方案3相比,方案2具有幾乎相同的區范圍,但葉尖間隙較大,有利于防止動靜部件之間的摩擦,而方案6具有明顯的性能退化,易于分析其損耗機理。為此,分析了三種葉尖間隙:均勻間隙、方案2和方案6。旋渦是描述旋渦運動的重要特征量,其大小可以反映旋渦的強度。在間隙均勻的情況下,渦量分布從葉片前緣到后緣呈下降趨勢,流入量能有效地粘附在吸力面上,因此風機渦量相對較小。由于主流與泄漏流的相互作用,葉片頂端的渦度比吸力面大得多,較大渦度出現在吸力面拐角處和葉片頂端附近。中間葉片頂部渦度強度明顯增大,這是由于間隙收縮導致葉片前緣泄漏面積增大,導致泄漏流量增大,主流與泄漏流量的混合程度增大,渦度強度增大。風機葉尖間隙的大小沿流動方向減小,即葉片葉尖越靠近殼體,泄漏旋渦越靠近葉片上部和中部。副作用減少。
在風機葉片前緣形成了c形軸向速度分布,在翼型阻力的作用下,流入流的軸向速度減小,形成了一個低速區。吸入面沿轉子旋轉的相反方向形成橫向壓力梯度。根據機翼理論,通過吸力面的速度高于通過壓力面的速度,吸力面后緣形成高速區。進一步討論了動葉區中間流動面內的總壓力分布。分析了在設計流量下動葉區中流面內的總壓分布。由于風機葉片壓力面所做的工作,壓力面上的總壓力明顯高于吸力面上的總壓力,總壓力沿動葉片旋轉方向由壓力面逐漸下降到吸力面。總壓逐漸升高,但吸入面略有變化。這是因為當氣流通過葉柵時,從吸力面到相鄰葉片壓力面的離心力沿葉片高度逐漸增大。為了抵消離心力的影響,將葉片設計為扭曲葉片后,沿葉片高度方向產生橫向壓力梯度,木材干燥窯風機,使兩個力達到平衡,吸力面附近有一個負壓區。由于風機葉片的吸入面和壓力面之間的壓差較大,位于壓力側的流體通過葉尖間隙流向吸入面,導致葉尖間隙中的泄漏流。泄漏流與主流相互作用,產生較大的泄漏損失。