根據以往對風機亞音速定子葉片的研究,前緣彎曲用于匹配迎角[20],干燥風機,根部彎曲高度為20%,端部彎曲角度為20,頂部彎曲高度為30%,端部彎曲角度為40,如圖18左側所示。彎曲高度和彎曲角度的選擇是基于流入流的流動角度條件:如圖5中藍色箭頭所示,定子葉片的流入角度受上游動葉片的影響,靠近端壁有兩個不符合主流分布趨勢的區域,而彎曲高度末端彎板的t應覆蓋與流動角度匹配的區域;末端彎板角度的選擇基于區域和主流流動角度之間的差異。
根據前面的研究,風機前緣彎曲的定子葉片可以有效地消除流入攻角,但葉片的局部端部彎曲會導致葉片局部反向彎曲的形狀效應。在---端部攻角減小的同時,定子葉片端部的阻塞量增大,損失增大。在端部彎曲建模的基礎上,適當疊加葉片正彎曲建模,可以減小端部攻角,---定子葉片和級間的有效流動。通過實驗設計的方法,得到了合適的前彎參數:風機彎曲高度60%,輪轂彎曲角度40,翼緣彎曲角度20,基本符合以往研究得出的彎曲葉片設計參數選擇規則。不同葉柵的吸力面徑向壓力梯度和出口段邊界層邊界的徑向壓力梯度可以---地進行比較。在帶端彎和正彎葉片的三維復合葉片表面,存在兩個明顯的徑向壓力梯度增大區域,形成從端彎到流道中徑的徑向力,引導風機葉片表面邊界層的徑向重排。從出口段附面層的邊界形狀可以看出,復合三維葉片試圖使葉片的徑向附面層均勻化,消除了葉片角部區域的低能流體積聚,風機,對提高葉片邊緣起到了明顯的作用。
gambit軟件用于風機模型建立和網格生成。考慮到風機葉片翼型結構的復雜性和頂部區域的三維流動,首先選擇三角形網格劃分葉片頂部,并利用尺寸函數對網格進行細化,以---風機網格。其它區域的網格劃分為動葉區域網格作為參考,采用結構化/非結構化混合網格。為了---精度和網格獨立性,對原風機在216萬、245萬、286萬和337萬網格條件下的性能進行了模擬。結果表明,隨著網格數量的增加,烘干塔風機,總壓和效率逐漸接近樣本值,337萬和286萬網格的總壓和效率偏差分別為0.085%和0.024%。綜合模擬精度和網格數確定了所用的總網格數。這個數字是286萬。其中動葉面積198萬片,集熱器、導葉面積和擴壓管網格數分別為30萬片、26萬片和32萬片。在模擬葉尖間隙形狀的變化之前,將原始風扇的模擬結果與參考文獻中的風機性能進行了比較。結果表明,在33.31-46.63m3_s-1流量范圍內,總壓和效率的平均相對誤差分別為3.0%和1.5%,表明結果能夠反映風機的實際性能。
風機葉尖渦度的增大可以有效地阻礙泄漏流的通過,使風機泄漏流與主流混合造成的損失減小,葉片前緣泄漏量的增加小于中、后緣泄漏量的增加?傮w上,漏風量減少,提高了風機的性能。這與參考文獻中得到的前、后緣對風機總壓損失系數的影響是一致的。隨著間隙的逐漸增大,葉頂前部的渦度強度增大,后緣的渦度強度減小,總體變化較小,烘干室風機,泄漏量略有增加。葉片吸力前緣中部渦度強度略有增加,沿弦長方向吸力面中部和后部渦度強度基本不變。風機葉片前緣附近的渦度強度急劇增加。這是由于前緣點高度的變化導致的葉尖流動角度的變化。前緣點渦度強度的增加阻礙了吸力面附近的流入,也降低了主流與泄漏流的混合程度。雖然方案6的進風速度有所降低,但由于葉頂和后緣附近的渦度強度降低,風機效率總體降低,相應的泄漏面積和泄漏流量增大。軸向速度分布可以反映轉子葉片流道內的流動能力和分離尾跡區的特征。因此,轉子葉片出口軸向速度分布的徑向分布如圖6所示,用于分析流量。由于葉根和葉頂端壁附件的附面層較厚,導致流體流過該區域后的軸向速度較小,而葉頂附件又因泄漏存在使軸向速度進一步減小。