某車間離心風機至2016年止已運行近8 年,振動一直偏大,已困擾生產多年。即使是更新了葉輪總成,并在聯軸器對中性符合允差的情況下,運行時前后兩軸承位殼振實測振動速度有效值分別達到了3.0 mm/s 和3.6 mm/s 左右,這是屬于“可容忍”的范圍,但不宜長期運行工作。經我設備人員分析,認為振動大的原因有:一是混凝土基礎過于單薄,重量不足,且運行時基礎周圍地板有明顯的顫動;二是預埋地腳螺栓有松動跡象。經上級研究,決定趁當年大修時間充足的機會,對上述存在問題---,破除舊基礎后,按本文前述處理措施重新設計、施工新的混凝土基礎和預埋地腳螺栓。
開機正常生產后,該離心風機軸承位殼振實測振動速度有效值分別降到了0.45 mm/s 和0.52 mm/s,屬“-”級別。安裝精度不達標及其檢查處理措施安裝精度主要是指風機軸與驅動電機軸的同心度,即對中性。離心式風機聯軸器的同心度要求-。如果聯軸器沒有找正,或是找正達不到要求,引起離心風機振動將不可避免。應注意的是,即使原來同心度已經符合要求了,但是風機運行一段時間后,由于各種原因,同心度會也會發生變化,所以應注意定期檢查同心度,如發現同心度超過允許偏差了,要立即重新找正。因此,當風機發生異常的振動故障時,檢查聯軸器的對中情況是必不可少的。
離心風機是廣泛應用的一種機械,它的工作原理是將機械能轉化成氣體的壓力能,進而排送氣體,山東離心風機,在建筑業、鋼鐵業和農業等領域都有應用。金屬葉輪是離心風機的重要組成部分,排塵離心風機,對于離心風機的安全運行和性能起著決定作用。隨著經濟的發展以及技術的發展,老舊的離心風機已經不能適應現代化發展的需要。因此,對離心風機進行結構優化成為了人們廣泛關注的問題。離心風機結構優化對金屬葉輪的穩定運行起著重要的推動作用。
本文通過結構優化對離心風機金屬葉輪穩定運行影響進行研究,主要通過各部件結構優化對離心風機金屬葉輪穩定運行的作用作簡要分析,以達到為-金屬風機的平穩運行提供理論支持的目的。離心風機和金屬葉輪互相影響,互為補充。金屬葉輪是離心風機的重要組成部分,在一定程度上決定著離心風機的性能。同時,離心風機的結構優化又促進了葉輪的平穩運行。離心風機廣泛應用于鍋爐引風、中央空調系統等多個領域,為人們的生產生活帶來了-的便利。然而離心風機也會造成大量的能源消耗,必須實現對離心風機的結構優化,以-金屬葉輪的平穩運行,達到節約能源的目的。
幾何模型建立與網格劃分
計算模型采用掘進工作面4-72-5.6a 防爆防腐蝕的離心式通風機,其主要參數:電機功率22 kw,中壓離心風機,轉速2 930 r/min,流量10 122~25 736 m3/h,全壓4 152~2 330 pa。其主要由進風口、集流器、葉輪和蝸殼組成。
離心風機集流器中添加了米字形結構與環形擋環。風機結構復雜且葉片外形不規則,因此生成結構化網格比較困難,相反非結構化網格適應能力強,在處理復雜結構時有利于網格的自適應。
因此離心風機采用四面體非結構化網格。使用ansys 軟件中的cfd 軟件進行網格劃分,加米字形集流器模型網格數1 072 503,網格節點數184 910;普通圓弧形模型網格數1 296 832,網格節點數223 847。以離心風機在掘進工作面環境下的運行工況為依據,進行離心風機參數設置:流量取22 806.54 m3/h,流速取6.335 15 m/s, 流量取7.491 3 kg/s。把pro/e 建立的幾何模型導入fluent 中并對幾何模型的邊界條件計算參數進行設定。其中入口類型采用速度進口,出口設為壓力邊界條件,本計算采用的樣機是礦用式離心風機, 出口靜壓可以近似為0,蝸殼內壁及葉輪壁面粗糙度均取0.5,離心風機廠商,集流器、葉輪、蝸殼等各流體區域結合處的公共面采用interface邊界類型面, 將葉片的壓力面和吸力面以及葉輪前盤、后盤和轉軸的內外表面一起定義為旋轉壁面。環境壓力為101 325 pa,取粉塵流體密度ρ=1.225 kg/m3。計算時采用--- 壓力速度耦合方法進行。