研究-了小麥熱風干燥過程受熱風溫度、熱風風速、烘干機烘干時間和緩蘇烘干比值4個因素的影響-。在熱風干燥的過程中盡管沒有明顯的恒速干燥階段,但具有-的降速干燥階段。研究了谷物的烘干特性和工藝特性,通過試驗方法確定烘干系統的各工藝參數,主要對熱風溫度、谷層厚度、干燥時間、熱風速度、緩蘇時間5項烘干參數進行試驗分析。
研究提出烘干機采用熱風風送達到碎葉烘干的目的。烘干機解決了現有技術中通過螺工藝中存在的排潮能力差、水分不均勻的問題,-地達到了工藝要求。研究了不同的干燥方法對木瓜品質的影響,顯示真空干燥、真空冷凍組合干燥能較好的保持干制木瓜產品的vc和黃酮含量,但干制后的顏色與脆硬度不十分理想,而熱風干制可以獲得較理想的脆硬度。研究了不同包裝方式對哈密瓜凍干脆片常溫貯藏過程中品質的影響。
烘干機組成
熱泵型香菇烘干房包含高溫熱泵子體系、溫濕度操控調理子體系、烘干房子系統。
高溫熱泵子體系
高溫熱泵子體系主要設備為壓縮機、節省設備、風冷冷凝器、風冷蒸發器,輔助設備有油分離器、儲液器、干燥過濾器、視液鏡、吸氣壓力調理閥以及銜接管道等。高溫熱泵子體系是熱泵型香菇烘干房的熱源供應體系,烘干機在香菇烘干過程中經過熱泵循環將烘干房外環境中的熱量轉移到烘干房內以烘干香菇,比較傳統燃煤、木材的能源供給模式,熱泵型香菇烘干房具有明顯的節能減排效果。烘干機熱泵采用分體式空氣源熱泵,蒸發器放置在烘干房的外面以吸收環境中的熱量,冷凝器放置在烘干房內部,以釋放出熱量,熱泵機組蒸發器和冷凝器均為風冷形式。
烘干機溫濕度操控調理子體系
溫濕度操控調理子體系由能量調理閥、風冷冷凝器風機、風冷蒸發器風機、排濕排熱風機、新風風機、電加熱器、操控器、溫度傳感器、濕度傳感器及銜接導線組成。烘干房內設置有干濕球溫度計,魚干烘干機,烘干機溫濕度操控調理子體系依據干濕球溫度計傳回的信息對烘干房內的溫濕度改變進行實時調理,當烘干房內溫升過快或溫濕度達到要求時,可操控排濕/排熱風機開啟,排出熱濕空氣,以-的對香菇進行烘干。當冬季室外溫度過低,烘干房內溫升過慢時,能夠操控開啟電加熱器進行輔助加熱,-烘干品質。
烘干機不同送風方式對比分析
不同的氣流組織方式決議了流場的優劣,相同決議了熱泵型香菇烘干房的熱風使用功率和工作功率,因而本文經過對側送風上回有回風通道、側送風上回無回風通道、下送風上回有回風通道、烘干機下送風上回無回風通道四種不同的送風方式進行對比分析,對不同送風方式的氣流組織進行點評,斷定出熱泵型香菇烘干房內較優的氣流組織。
分析烘干機側送上回有回風通道送風方式下z軸各截面速度分布可知,在z=0.3m、z=0.6m和z=0.9m截面,臘肉烘干機,在x為0的方位,y軸中部方位有較大流速,而y軸兩端方位流速較小,烘干機在z=1.2m和z=1.5m截面,x為0的方位流速較小,這是由于烘干房送風口尺寸是1.4×1m寬×高,且送風方向為沿x軸方向,因而在正對送風口方位有較大風速,非送風口正對方位風姿則較小。在送風口上部方位,空氣流速隨z軸高度的增加而衰減較快。z=1.7m截面坐落回風通道內,烘干機,風量在此---,因此全體流速較大。全體來說,側送風上回有回風通道送風方式下,z軸截面上空氣流速相對均勻,但烘干機沿著z軸方向來看,同一x軸方位空氣流速均勻性欠佳,解決此問題的辦法是盡量加大送風口尺寸或者在送風口上部設置軸流風機助力。