鍵盤及顯示模塊是烘干機溫控體系完-機交互的重要手段。本體系中顯示器設定操作界面,包括:開機、設定、待機、運轉、報警、完畢等6 個界面;鍵盤用來設定方針溫度、時間、參數,以及操控體系的作業狀況轉化。顯示器選用迪文屏幕類型dmt80480c070_03w,屏幕明晰,操作便利,反應靈敏,交互及時。設計鍵盤選用非編碼鍵盤,選用中止方式作業。
溫控體系設計軟件
烘干機經過操控器實時檢測烘干箱內的溫度、時間等相關信息,并依據預設的參數對數據進行分析處理,操控分級,監控溫度傳感器等部件作業,若發現異常,操控單元能自我毛病診斷并輸出報警信號。整個控制軟件選用模塊化結構進行編寫設計,遵循模塊-結構緊湊,模塊數據之間關系松散的原則,便于編寫、調試、修正、增刪。
主程序設計
烘干機主程序模塊的首要作業是上電后,對體系進行初始化,苜蓿草烘干機,構建體系整體軟件結構。初始化包括對單片機的初始化,a/d 芯片初始化和串口初始化等。初始化完成后進行毛病檢測,包括:檢測鍵盤、液晶屏,檢測芯片以及單片機等芯片的作業,肉類烘干機,以-體系的正常運轉。如果存在毛病,則啟動自我診斷功能,判別毛病類型,保存當前運轉狀況,輸出報警信號,排除障礙后,進行復位康復運轉。體系病則等待溫度、時間設定,若參數已經設定好,則判別體系運轉鍵是否按下,若體系開始運轉,將依次調用各個相關模塊,循環操控直到體系停止運轉。
烘干機
烘干機集熱器串聯組合設計
集熱器設計時,考慮到空氣集熱器的裝置方便性、運送便捷性和板材原料的尺寸及本錢,一般空氣集熱器的采光面積在2m2 左右,經過優化設計后單個空氣集熱器的結構尺寸確定為2010mm × 995mm × 150mm,主要有玻璃蓋板、集熱器表里殼體、吸熱板、保溫材料和內部支撐結構組成。
太陽能能源密度小,單個集熱器對空氣的加溫才能有限,不能滿意枸杞烘干機的工藝要求,生產中經常將集熱器選用陣列方法組合運用。把太陽能集熱器進行串聯, 個集熱器加溫后的熱空氣再接入第2 個集熱器的進口,對空氣進行接連加溫,能夠提高空氣的溫度,但一起由于散熱面積加大,集熱器熱丟失變大,所以將集熱器串聯起來整體功率會相應地受到影響,選用試驗的方法對單個集熱器,2個集熱器和3 個集熱器進行串聯,別離測試集熱器出口溫度,3 個集熱器串聯的方式出口溫度明顯大于單個集熱器和2 個集熱器串聯的方法,在天氣晴朗的正午時間能夠達到65℃。結合枸杞烘干所需溫度、效益及本錢等因素綜合考慮,咱們設計的枸杞太陽能烘干設備集熱體系選用3 個集熱器串聯的方法。
烘干機
本研討利用自制的旋風式玫瑰花籽烘干機進行干燥工藝優化實驗,在單要素實驗的基礎上,選取氣流速度、干燥溫度、分級器內孔直徑3要素進行二次回歸正交旋轉組合試驗,選用design-expert軟件對實驗數據進行分析和處理,確定醉佳工藝參數為:干燥溫度85℃、氣流速度19m/s、烘干機分級器內孔直徑136mm。此條件下所得玫瑰花籽單位時間失水率的實際值與模型預測值相比,誤差僅為0.01%/min。研討結果解決了玫瑰花籽干燥功率低、干燥不均勻的問題,為玫瑰花籽的產業化提供了技能參閱。本研討對玫瑰花籽干燥工藝運用還處于小試階段,有待進行-生產。
烘干機選用階段式烘干工藝,將烘干進程分為多個階段,每個階段由若干個“升溫+保溫”進程組成。這種工藝實用性強,運用廣泛。初期階段,即低溫慢速干燥,烘干機,通過低溫加熱,模仿自然干燥,使紫菜失水;中期階段,果干烘干機,即中溫等速干燥,通過中溫加熱,是紫菜外形色彩到達預期要求;晚期階段,即高溫快速干燥,通過高溫加熱,使紫菜完全烘干。
溫度傳感器將實時采集烘干箱內的溫度數據并傳輸至操控系統,當丈量溫度大于設定溫度時即關閉加熱,打開排風機進行散熱,當丈量溫度小于設定溫度時即啟動加熱。一起,主風機將加熱的熱空氣送入烘干箱內,而排風機將熱空氣從烘干箱經導流管至加熱器循環運用,節能提搞效率。
烘干機