舜天烘干機的設計,采用主風道等壓式送風和副風道渦流送風方法,解決了送風不均帶來的烘干不均難題。為主風道設計了一個等壓室,形成等壓主送風體系,在等壓室內裝置有調風裝置,蘿卜干烘干機,烘干機能夠靈敏方便的調整風向,開始完成了均勻送風。一起又設計了一條副風道。副風道由余熱收回器、副風機、渦旋送風體系組成。
在熱風爐的煙道中設計裝置一臺余熱收回器,將煙氣余熱有效收回使用,再把余熱使用副風機送入烘干機的渦旋送風體系,在烘干機內部分區域構成渦旋狀立體送風帶,將熱量送至烘干機的任何角落,從而完成了均勻送風,提高了產品的烘干和產量。一起,因為煙氣余熱的有效使用,大-低了生產成本。
烘干機的主要部件包含1 2 個部分:主風管、熱風箱、主風機、熱風爐、余熱收回器、副風機、副風道、煙囪、除塵器、煙氣引風機、烘干隧道窯、頂推機等。
烘干機工作時,主風機從-中吸入的環境空氣經管路進入熱風爐中,經過與熱風爐燃燒室中燃燒的燃煤所產生的煙氣進行熱交換而被加熱,成為熱風。隨后,熱風經熱風箱和管路被送到烘干地道窯中。烘干地道窯是一個由保溫材料砌成的、橫截面為矩形的長通道,在其底面鋪設有軌跡,在軌跡上有多輛可以沿軌跡移動的物料小車。在烘干機作業期間,各物料小車-層放置著待烘干的果蔬物料。熱風的進風方法根據烘干機的類型分兩種,一種是熱風從烘干地道窯的一端進入,經過物料小車上的物料層,隨后從地道窯的另一端排出。另一種進風方法是熱風從烘干地道窯的兩端即進料口和排料口一起進風,烘干機,在地道窯的中部排潮口排出。在上述過程中,由相對濕度較低的熱風帶走了果蔬物料的水分而使其烘干。
烘干機
盛載著物料的小車隊在軌跡上沿著從進料口到出料口的方向做間歇移動。當位于醉前端的小車上的物料水分含量降到預訂數值后,該物料小車被人工拉出烘干地道窯,并送入冷卻風室,以便對物料進行冷卻,冷卻后的物料可到達醉終要求的水分含量。小車隊的行進由頂推機推進,芒果烘干機,頂推機在小車隊的后端進行頂推操作,每次使小車隊向前移動一個小車長度的距離;隨后在頂推機與小車行列之間加入一輛放置了待烘干物料的小車。上述過程不斷地重復,載貨小車不斷行進,使烘干物料醉終到達符合要求的含水率。
烘干機
烘干機溫控系統組成原理
本文所述的烘干機是用來烘干紫菜等產品,完成存儲意圖的裝置。采用箱式結構,以熱輻射加熱為主,采用對流熱風循環。烘干機采用1 個烘干箱,6 個溫區,每個溫區的丈量和控制原理完全相同。烘干過程中,烘干箱內溫度的資料和控制規模為0-110℃,烘干機設備廠,顯現精度為0.1℃,控制精度小于1℃。根據上述要求進行設計溫控系統,以滿意烘干機所有的溫度、精度。
本文設計的溫控系統硬件部分分為:單片機主控模塊、輸入輸出通道模塊、報警模塊等。硬件的整體結構示意圖。烘干機溫控系統由單片機為中心,與外部芯片擴展構成主控模塊。烘干箱的溫度由溫度傳感器檢測后,通過單片機內置的12 位a/d 轉化器轉化成數字信號。數字信號經采樣、濾波、標度轉化后,一方面將烘干箱內溫度由顯現器顯現,另一方面將該溫度值與設定值進行比較,取偏差值依照積分別離的pid 控制算法計算得輸出控制量。控制輸出量通過固態繼電器控制加熱管的加熱時間,從而調節溫度改變,使其趨向設定值,完成烘干機的溫度控制。
溫控系統設計硬件
烘干機電源電路
電源模塊是溫控系統重要的組成部分,為系統中各模塊供給穩定牢靠的作業電壓,-系統正常作業。本系統采用外部12v 直流電源供電,經處理轉化成3.3v 為單片機供電。烘干機設計分兩步,一:選用輸出電壓精度高,輸出電流大的模塊電源,將電壓從12v 轉化成5v;二:選用三端集成穩壓器將電壓從5v 轉化成3.3v。